
Extremal and Probabilistic Graph Theory

Lecture 8

March 24th, Thursday

Today we prove a lower bound of exr(n,K
(r)
s ) mentioned in Lecture 7.

Theorem 8.1.

exr(n,K
(r)
s ) >

(
1−

(
r − 1

s− 1

)r−1
+ o(1)

)
·
(
n

r

)
.

Proof. We need to show there exists a Kr
s -free n-vertex r-graph G with at least(

1−
(
r − 1

s− 1

)r−1
+ o(1)

)(
n

r

)
many edges. Equivalently, we can construct a complement graph H = Gc satisfying:

(i) e(H) 6

((
r − 1

s− 1

)r−1
+ o(1)

)(
n

r

)
;

(ii) Any s-subset of V (H) contains at least one edge.

The graph H is constructed as follows. Let H be a graph with V (H) = V1 t V2 t · · · t Vs−1,
where b n

s−1c 6 |V1| 6 · · · 6 |Vs−1| 6 d n
s−1e. For each e ∈

(
V
r

)
, e is an edge if and only if there

exists an index j such that
k−1∑
i=0

|e ∩ Vj+i| > k + 1 (8.1)

for ∀1 6 k 6 r − 1. (Note: The subscripts of Vj+i are taken module s− 1.)

We first verify (ii) for H. In fact, we can show something stronger: for any S ∈
(
V
s

)
, then

there exists an index j such that
k−1∑
i=0

|S ∩ Vj+i| > k + 1

for ∀1 6 k 6 s− 1.
We shall see that this condition implies that there exists e ∈

(
S
r

)
satisfying (8.1). The proof

of the above statement is left as an exercise. (Or see a proof in the end of this notes.)
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All we need is to verify (i) for H. It is easier to count the number of ordered r-tuple
(x1, x2, · · · , xr) such that {x1, x2, · · · , xr} is an edge. Let K be the number of such ordered
r-tuples in H. Then K = r! · |E(H)|. So we need to show

K 6

(
r! ·
(
r − 1

s− 1

)r−1
+ o(1)

)(
n

r

)
≈
(
r − 1

s− 1

)r−1
nr + o(nr).

Definition: For an edge {x1, · · ·xr}, we define the signature of the r-tuple (x1, x2, · · · , xr) as
(j,~c) such that

• j is the index satisfying (8.1);

• ~c = (c1, c2, · · · , cr) where xi ∈ Vj+t iff ci = t. We see that 0 6 ci 6 r − 2.

Observation 1: The signature of an r-tuple (x1, x2, · · · , xr) determines whether it forms an edge
or not.
Definition: We say ~c = (c1, c2, · · · , cr) is legal if any r-tuple with signature (j,~c) forms an edge.

Observation 2: Each legal ~c has approximately (s− 1)
(

n
s−1

)r
r-tuples whose signature is (j,~c)

for some 1 6 j 6 s− 1.
Therefore, it suffices to show there are at most(

r−1
s−1

)r−1
nr

(s− 1)
(

n
s−1

)r = (r − 1)r−1

legal vectors ~c = (c1, c2, · · · , cr), where 0 6 ci 6 r−2. Denote C = {(c1, c2, · · · , cr) : 0 6 ci 6 r−2}
and L = the subset of legal vectors in C. Then it is equivalent to show

|L|
|C|

6
(r − 1)r−1

(r − 1)r
=

1

r − 1
.

We will partition C into many many subfamilies as follows, each of which has r − 1 vectors
and has at most 1 legal vector ~c. For each ~c = (c1, c2, · · · , cr), define

shift(~c, l) = ~c + l ·~1 = (c1 + l, c2 + l, · · · , cr + l)

for 0 6 l 6 r − 2. Here ci + l are taken under Zr−1 = {0, 1, 2, · · · , r − 2}.
Consider the subfamilies {shift(~c, l) : 0 6 l 6 r − 2}, which partition C.
We are left to show there are at most 1 legal vector in every subfamily {shift(~c, l)}. Suppose

for contradictions that there are 2 legal members, say without loss of generality{
shift(~c, 0) = ~c;

shift(~c,−l).

Let r-tuple (x1, x2, · · · , xr) have signature (j,~c), where {x1, x2, · · · , xr} is an edge of H. Consider
another r-tuple f = (x′1, ..., x

′
r), where each x′i is obtained by cyclically “shifting” xi from its own
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cluster to the lth cluster on its left (here, we view clusters Vj , ..., Vj+r−2 are cyclically arranged).
We point out that the signature of f is (j, shift(~c,−l)).

Let e = {x1, · · · , xr} and aj+i = e ∩ Vj+i for i ∈ Zr−1 = {0, 1, · · · , r − 2}. Taking k = l from
(8.1), we have

l−1∑
i=0

|e ∩ Vj+i| > l + 1,

i.e.
aj + aj+1 + · · ·+ aj+l−1 > l + 1. (8.2)

Let a′j+i = f ∩ Vj+i for i ∈ Zr−1. Then we see that a′j+i = aj+i+l, where i + l is taken under
Zr−1. By taking k = r − l − 1 from (8.1) for f , we get

r−l−2∑
i=0

|f ∩ Vj+i| = a′j + ... + a′j+r−l−2 = aj+l + · · ·+ aj+r−2 > r − l. (8.3)

Adding up (8.2) and (8.3), we have

r = aj + aj+1 + · · ·+ aj+r−2 > r + 1.

This contradiction finishes the proof.

*******************************************************************
Another Proof. (Contributed by X. Yuan)

Make the same construction with proof 1. We prove a lemma:
Lemma: For non-negative integers v1, ..., vt−1, v1 + · · ·+ vt−1 = t. Let

Tj = (t− 1)vj + (t− 2)vj+1 + · · ·+ vj+t−2,

then there is a unique j0 such that Tj0 = max
i=1,··· ,t−1

{Ti} and

k−1∑
i=0

vj+i ≥ k + 1 for ∀1 ≤ k ≤ t− 1 (8.4)

holds if and only if j = j0. (Here the subscripts of vj+i are taken module t− 1. )
Proof of lemma.

Say j0 = 1, then for j 6= 1

T1 ≥ Tj ⇒ (t− 1)(v1 + · · ·+ vj−1) ≥ (j − 1)t⇒ v1 + · · · vj−1 ≥ j (8.5)

⇒ (t− 1)(v1 + · · ·+ vj−1) ≥ (t− 1)j > (j − 1)t⇒ T1 > Tj (8.6)

From (8.6) we know that the maximum is unique. (Remark. In fact, {v1, ..., vt−1} are distinctive
since s and s− 1 are coprime.) On the other hand,

T1 < Tj ⇒ v1 + · · · vj−1 < j

doesn’t satisfy (8.4), together with (8.5) we have (8.4) holds if and only if j = 1. This finishes
the lemma.
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From the lemma we know that (ii) holds since for t = s, the maximum must exist.
For (i), since the notations and some inequalities are the same with proof 1, here we only

show that there are at most (r − 1)r−1 legal vectors ~c = (c1, c2, · · · , cr).
Let di = #{j|cj = i− 1, j = 1, 2, ..., r}, i = 1, ..., r − 1. Then d1 + · · ·+ dr−1 = r. From (8.1)

we have
k−1∑
i=0

dj+i ≥ k + 1 for ∀1 ≤ k ≤ r − 1.

(Here the subscripts of dj+i are taken module r − 1.) From the lemma, there is at most 1
permutation of (c1, ..., cr) which is legal. Thus

|L|
|C|

6
(r − 1)r−1

(r − 1)r
=

1

r − 1
.

This finishes the proof.

Remark. In fact, the map from ‘signature’s to r-subsets is surjective but not injective, i.e. one
r-subset can have more than one ‘signature’. But here, from the proof we can see, the map from
‘legal signature’s to edges is bijective. Amazing construction!
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