Extremal and Probabilistic Graph Theory
Lecture 8

March 24th, Thursday

Today we prove a lower bound of ex,(n, K §”>) mentioned in Lecture 7.

e, (n, K{") > (1 - (Z:Drl +0(1)> : (:)

Proof. We need to show there exists a K-free n-vertex r-graph G with at least

(20 ) ()

many edges. Equivalently, we can construct a complement graph H = G°¢ satisfying:

(i) e(H) < ((Zj)r—ﬂou)) <’:>

(ii) Any s-subset of V(H) contains at least one edge.

Theorem 8.1.

The graph H is constructed as follows. Let H be a graph with V(H) =V, UVa U -+ U Vg,
where | 7] < [Vi] < - < |Vsoq] <[], For each e € (‘T/), e is an edge if and only if there

exists an index j such that
k—1

Y lenVipl =2 k+1 (8.1)
i=0
for V1 < k <r —1. (Note: The subscripts of Vj; are taken module s — 1.)

We first verify (ii) for H. In fact, we can show something stronger: for any S € (Z)v then
there exists an index j such that

k—1
DoISNViil = k+1
1=0

for V1 <k <s—1.
We shall see that this condition implies that there exists e &€ (f) satisfying (8.1). The proof
of the above statement is left as an exercise. (Or see a proof in the end of this notes.)



All we need is to verify (i) for H. It is easier to count the number of ordered r-tuple
(x1,x9, -+ ,x,) such that {x1,z9, -+ ,2,} is an edge. Let K be the number of such ordered
r-tuples in H. Then K =r!-|E(H)|. So we need to show

K< (H - (2 = DH +o(1)> (:})

r—1\""" | .,
~ n" +o(n").

s—1

Definition: For an edge {x1,---x,}, we define the signature of the r-tuple (x1,z2, -+ ,x,) as
(7, €) such that

e j is the index satisfying (8.1);
o = (c1,¢c2, -+ ,¢) where x; € Vj i iff ¢; =t. We see that 0 < ¢; <r —2.

Observation 1: The signature of an r-tuple (z1,x2, - ,z,) determines whether it forms an edge
or not.

Definition: We say ¢ = (c1,c2, - ,¢) is legal if any r-tuple with signature (j, ¢) forms an edge.
Observation 2: Each legal ¢ has approximately (s — 1) <sf—1)r r-tuples whose signature is (j, ¢)
for some 1 < j <s—1.

Therefore, it suffices to show there are at most

(%>T_1 " = (r
(-1 (&)

legal vectors ¢ = (¢1,c¢2,- -+ ,¢r), where 0 < ¢; < 7—2. Denote C = {(c1,¢2,- -+ ,¢) : 0 < ¢; < r—2}
and L = the subset of legal vectors in C. Then it is equivalent to show

o 1)r71

L _ -1t

cl =~ (r—1r  r—1

We will partition C into many many subfamilies as follows, each of which has r — 1 vectors
and has at most 1 legal vector ¢ For each ¢ = (c1,co, - ,¢,), define

shift(¢,1) =+ 1-T=(c1 + Lo+ 1, ,cr +1)

for 0 <1 <r—2. Here ¢; + [ are taken under Z,_1 = {0,1,2,--- ,r — 2}.

Consider the subfamilies {shift(c,1) : 0 <! < r — 2}, which partition C.

We are left to show there are at most 1 legal vector in every subfamily {shift(¢,[)}. Suppose
for contradictions that there are 2 legal members, say without loss of generality

shift(¢,0) = &
shift (e, —1).

Let r-tuple (z1, x9,- - - ,x,) have signature (7, ¢), where {1, 2, -+ ,z,} is an edge of H. Consider

/

another r-tuple f = (2}, ..., z).), where each z is obtained by cyclically “shifting” z; from its own



cluster to the I*" cluster on its left (here, we view clusters Vi, ..., Viqr—2 are cyclically arranged).
We point out that the signature of f is (j, shift(¢, —1)).

Let e = {x1,--- ,2,} and aj4; = eNVjy, for i € Z,—1 = {0,1,--- ,r — 2}. Taking k = [ from
(8.1), we have

-1
Y lenVipl =1+1,
=0
ie.
aj +ajy1+-+ajyo =1+ 1. (8.2)

Let a;-ﬂ- = fNVjg for i € Z,—1. Then we see that a;+i = aj441, where i + [ is taken under
Zy—1. By taking k =r — 1 — 1 from (8.1) for f, we get

r—[—2

Z Vil =d;+ .. +dy,  g=aju+-+ajo>r—1 (8.3)
=0

Adding up (8.2) and (8.3), we have
r=a;+ a1+ -+ ajpr2 >r—+1.
This contradiction finishes the proof. |
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Another Proof. (Contributed by X. Yuan)
Make the same construction with proof 1. We prove a lemma:
Lemma: For non-negative integers vy, ...,v4_1, v1 + -+ vi_1 =t. Let

Tj = (t — 1)1)]- + (t — 2)Uj+1 + -+ V-2,
then there is a unique jo such that Tj, = {na}t( l{Tz} and
=1, i~
k—1

d vz k4 1lforvVi<k<t—1 (8.4)
1=0

holds if and only if j = jo. (Here the subscripts of vjy; are taken module t — 1. )
Proof of lemma.
Say jo = 1, then for j # 1

T1ZT]‘:>(t—1)(1)1+”'+’Uj_1)Z(j—l)t:>’01+"‘vj_1 > (85)

=>(t—1)(1}1+-~~+?)j_1)Z(t—l)j>(j—1)t=>T1>Tj (8.6)

From (8.6) we know that the maximum is unique. (Remark. In fact, {vi,...,v;—1} are distinctive
since s and s — 1 are coprime.) On the other hand,

T1<Tj:>v1+--~vj,1 <j

doesn’t satisfy (8.4), together with (8.5) we have (8.4) holds if and only if j = 1. This finishes
the lemma.



From the lemma we know that (ii) holds since for ¢ = s, the maximum must exist.

For (i), since the notations and some inequalities are the same with proof 1, here we only
show that there are at most (r — 1)"~! legal vectors ¢ = (c1,¢2,- -, ¢p).

Let di = #{jl¢; =i—-1,j=1,2,..,r},i=1,..,7—1. Then dy + -+ d,—1 = r. From (8.1)

we have
k—1

Y djizk+1forvi<k<r-—L

i=0
(Here the subscripts of d;y; are taken module  — 1.) From the lemma, there is at most 1
permutation of (ci, ..., ¢,) which is legal. Thus

Ll _(r—1)! 1
| <

cl =~ (r—1r  r—1

This finishes the proof. |

Remark. In fact, the map from ‘signature’s to r-subsets is surjective but not injective, i.e. one
r-subset can have more than one ‘signature’. But here, from the proof we can see, the map from
‘legal signature’s to edges is bijective. Amazing construction!



